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Dynamics of phase separation in multicomponent mixtures
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~Received October 31 2001; published 24 January 2002!

We study the dynamics of phase separation in multicomponent mixtures through Monte Carlo simulations of
the q-state Potts model with conserved kinetics. We use the Monte Carlo renormalization-group method to
investigate the asymptotic regime. The domain growth law is found to be consistent with the Lifshitz-Slyozov
law, L(t);t1/3 ~wheret is time!, regardless of the value ofq. We also present results for the scaled correlation
functions and domain-size distribution functions for a range ofq values.
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I. INTRODUCTION

There has been much recent interest in phase-orde
dynamics, viz., the temporal evolution of a homogeneo
multicomponent mixture, which is rendered thermodynam
cally unstable by a sudden quench below the critical te
perature@1#. After the quench, domains of different ordere
phases form and grow with time as the system reaches l
equilibrium on increasing length scales. For binary~AB!
mixtures, where the evolving system segregates intoA- and
B-rich regions, the far-from-equilibrium coarsening dyna
ics has been studied extensively through experiments,
merical simulations, and approximate analytical methods@1#.
However, the case ofq-component mixtures (q.2) has re-
ceived far less attention, though such mixtures are of obvi
importance in the context of metallurgy and materials s
ence. In this paper, we present comprehensive results fro
Monte Carlo renormalization-group~MCRG! study @2,3# of
segregation dynamics in theq-state Potts model with con
served kinetics, which is a simple model for phase-separa
multicomponent mixtures@4#.

Before we proceed, it is useful to briefly review the ph
nomenology for phase-ordering dynamics in binary mixtur
as this provides the context for our present study. For iso
pic systems, the growth of ordered domains is character
by a single time-dependent length scaleL(t) wheret is the
time after the quench. Therefore, the evolving morpholog
invariant in time, and the order-parameter correlation fu
tion C(r ,t), where r is the spatial separation, exhibits
dynamical-scaling form@5#

C~r ,t !5^c~RW ,t !c~rW1RW ,t !&2^c~RW ,t !&^c~rW1RW ,t !&

[ f S r

L~ t ! D . ~1!

In Eq. ~1!, c(rW,t) is the relevant order parameter at spa
point rW and timet; and the angular brackets refer to an av
aging over initial conditions and the noise ensemble.
pure systems, the characteristic length scale exhibit
power-law behavior,L(t);tf, where the exponentf de-
pends upon the nature of conservation laws, relevanc
hydrodynamic effects, etc.@1#. In the case with noncon
served order parameter~e.g., ordering dynamics of a ferro
magnet!, we have f51/2, which is referred to as th
1063-651X/2002/65~2!/026141~9!/$20.00 65 0261
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Lifshitz-Cahn-Allen ~LCA! law @6#. In the case with con-
served order parameter~e.g., segregation dynamics of a b
nary alloy via diffusive processes!, we havef51/3, which is
referred to as the Lifshitz-Slyozov~LS! law @7#. The LS
growth law has been confirmed in a vast range of exp
ments@8# and numerical simulations@9,3#.

It is important to examine the universality of these grow
laws. An experimentally relevant generalization consid
the dynamics of ordering inq-component mixtures. The
equilibrium behavior ofq-component mixtures is often un
derstood usingq-state spin models. An important example
this is the Potts model@4# with the Hamiltonian

H52J(̂
i j &

dSiSj
, Si51,2, . . . ,q, ~2!

whereJ(.0) is an exchange interaction that favors para
spins. In Eq.~2!, S^ i j & refers to a sum over nearest-neighb
pairs on the underlying lattice; and the Kronecker deltadnm
51 if n5m and 0 ifnÞm. Another important example of a
q-state spin model is the clock model with the Hamiltonia

H52J(̂
i j &

cosF2p

q
~Si2Sj !G , Si51,2, . . . ,q. ~3!

where the exchange interaction (J.0) again favors paralle
spins. Clearly, Eqs.~2! and ~3! are only special cases of th
most general Hamiltonian forq-state spins.

The crucial difference between the Potts model and
clock model is the nature of the penalty between dissim
spin states. In the Potts model, all pairs withSiÞSj are
equally penalized. Thus, the equilibrium state~at nonzero
temperature! consists of interfaces between domains of ar
trary spin state. There are also point defects at the junctio
three types of domains—the probability of having point d
fects with more than three domain types is negligible,
gardless of the value ofq. On the other hand, in the cloc
model, there is a continuous variation of energy asuSi2Sj u
increases. The maximum pair energy occurs foruSi2Sj u
5@q/2#, where@x# refers to the integer part of the argume
x. Therefore, the equilibrium state of the clock model~at
nonzero temperature! consists of interfaces between domai
of approximately similar spin states. There are also vort
like point defects, which become equivalent to vortex defe
©2002 The American Physical Society41-1
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of the XY model in the limitq→`. Our present study will
focus upon segregation dynamics for the Potts model in
~2!.

This paper is organized as follows. In Sec. II, we discu
earlier results for phase-ordering dynamics in theq-state
Potts model, thereby providing a background for the pres
study. In Sec. III, we describe our numerical techniques
the MCRG methodology. Section IV provides detailed n
merical results from our simulations. Finally, Sec. V co
cludes this paper with a summary and discussion of
results.

II. OVERVIEW OF EARLIER RESULTS

Let us briefly examine available results for ordering d
namics in theq-state Potts model. Theq-state spin models
@as in Eqs.~2! or ~3!# have no intrinsic dynamics. Therefor
we associate a physically appropriate stochastic dynam
with these models by placing them in contact with a h
bath. The simplest nonconserved kinetics is Glauber spin
kinetics, where the spin variable at a sitei is ‘‘flipped’’ as
Si→Si8 . Clearly, the spin composition is not conserved
this microscopic process, which is an appropriate descrip
of ordering inq-state ferromagnets. The simplest conserv
kinetics is Kawasaki spin-exchange kinetics, where the s
variables at neighboring sites~say, i and j! are interchanged
as Si↔Sj . This microscopic process conserves the s
composition of the mixture and the spin interchange mim
diffusive processes in phase-separatingq-component mix-
tures@10#. These kineticq-state spin models also have the
coarse-grained counterparts, which consider the relaxati
dynamics of (q21) order parameters with appropriate co
servation laws@11#.

There have been many numerical and analytical studie
the Potts model with nonconserved kinetics, and we w
only discuss some representative examples here. E
Monte Carlo~MC! studies of this system in dimensionali
d52, 3 are due to Sahni and co-workers@12#; Kaski et al.
@13#; and Kumaret al. @14#. A comprehensive MCRG stud
of theq58 Potts model on a two-dimensional~2D! triangu-
lar lattice was subsequently performed by Roland and G
@15#. An alternative approach is due to Lauet al. @16#, who
undertook a 2D Langevin simulation of the correspond
field-theoretic model@17#. These numerical studies demo
strate that the domain-growth law is consistent with the L
law, L(t);t1/2, for all values ofq. Furthermore, the abov
numerical studies also found that the scaled correlation fu
tion ~or its Fourier transform, the scaled structure factor! for
the q-state Potts model were comparable to that for theq
52 ~Ising! case.

It is appropriate to clarify the various regimes for doma
growth in the Potts model. The characteristic angle betw
neighboring spins on the lattice isu(t);1/L(t), as the do-
main size measures the typical interdefect spacing. At e
times, u(t) is larger than the quantization angleuq
52p/qd , whereqd53 for three-domain point defects.~The
Potts and clock models are equivalent forq53
@4#—therefore, the three-domain point defects of the Po
model are equivalent to the vortex-like point defects of
02614
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three-state clock model.! Thus, at early times, the local spi
variable is effectively continuous and the system beha
similar to the dynamicalXYmodel@18,19#. The discrete spin
structure is seen whenu(t).uq , or L(t).Lc;const3qd .
This corresponds to the crossover fromXY-like behavior to
Ising-like behavior@20#. However, there is no crossover i
the growth law because the LCA law characterizes coars
ing resulting from annihilation of both interfacial and vorte
defects@18,19#.

A more recent analytical and numerical study of the no
conserved Potts model is due to Sire and Majumdar~SM!
@21#, who argued that the evolution of theq-state Potts mode
is equivalent to the evolution of an Ising system wi
magnetizationm5^Si&52/q21. SM demonstrated that th
domain-growth law isL(t);t1/2 for arbitraryq values. They
also obtained approximate analytical results for the re
space correlation function using Mazenko’s Gaussian clos
scheme@22,1#.

There have been far fewer studies of the Potts model w
conserved kinetics, and the physical situation is not as c
as in the nonconserved case. An early MC study ind52 is
due to Grest and Sahni~GS! @23#, who reported a very low
growth exponentf.0.2 for the cases withq53, 6. This
result was refuted by Jeppesen and Mouritsen~JM! @24#, who
performed a 2D MC study of the conserved three-state P
model under critical quench conditions, i.e., all compone
were present in equal proportions. JM found that the
study had underestimated the growth exponent due to lo
lived transients, and the asymptotic growth law was con
tent with the LS law,L(t);t1/3. The numerical results of JM
have been confirmed in an exchange MC study by Ok
@25#. Recently, Tafaet al. @26# have undertaken 2D MC
simulations of phase separation in ternary mixtures, and
egorized evolution morphologies and growth laws in diffe
ent regions of the parameter space. The three-state P
model is a special case of their general study, which rep
an asymptotic LS growth law for a wide range of evolutio
morphologies.

To the best of our knowledge, there has been no syst
atic study of theq-state Potts model (q.3) with conserved
kinetics. The asymptotic growth regime should be consist
with the LS growth law, as the dominant growth mechani
is the annealing of domain boundaries. However, there
transient effects that give rise to slower growth laws a
interfere with the observation of the asymptotic regim
Firstly, as we have argued before, the early-time behavio
governed by the annihilation of vortexlike defects. In co
trast to the nonconserved case, there is a distinct growth
associated with vortex annihilation in the conservedXY
model, i.e.,L(t);t1/4 in d52 andL(t);(t ln t)1/4 in d53
@1,27,28#. The crossover from vortex-driven growth t
interface-driven growth occurs whenL(t).Lc . The depen-
dence ofL(t) on q can be determined by the followin
simple argument. In the homogeneous state prior to
quench, the density of a spin species;q21, where we con-
sider the case of a critical quench. If the domain format
time is t0 , the initial domain scale isL0;q21/d(Dt0)1/2,
whereD is the spin diffusion constant.~We assume that the
initial domain formation occurs by random spin motion!
1-2
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DYNAMICS OF PHASE SEPARATION IN . . . PHYSICAL REVIEW E65 026141
Thus, the prefactor in the domain-growth law scales withq
asq21/d and the crossover time scale istc;q4/dqd

4. Because
of the extreme discreteness of the point defects (qd53), this
crossover occurs rather early in our simulations. For a m
accurate estimate of crossover time scales and prefactors
should also account for theq dependence of the surface te
sion, which depends uponuTc2Tu and the appropriate criti
cal exponent@4#. We will discuss this point in greater deta
later.

Another important transient effect is the diffusion of spi
along interfaces, rather than through the domain bulk, wh
also yields the slower growth law,L(t);t1/4 @29,30#. This
effect is enhanced at higher temperatures, where the dom
boundaries are rough, and for higherq values, where the
domain length scales are smaller at a given time. T
asymptotic growth regime is accessed when the interfa
thicknesss ~which is constant in time! becomes irrelevan
compared to the diverging domain length scaleL(t) @31,32#,
i.e., s/L(t)→0. We will subsequently describe and use
MCRG procedure to facilitate the observation of the la
stage behavior.

III. NUMERICAL TECHNIQUES AND THE MONTE
CARLO RENORMALIZATION GROUP

The Potts model is defined by the Hamiltonian in Eq.~2!.
We performed 2D MC simulations of the Potts model w
Kawasaki spin-exchange kinetics on a square lattice. At t
t50, the system was quenched fromT5` to T,Tc , where
Tc@5J/ ln(11Aq)# is the critical temperature ford52 @4#.
~The Boltzmann constantkB is set to unity.! The system size
was N2 and periodic boundary conditions were imposed
both directions. The initial condition for each run consist
of a random mixture of all spin states in equal proportio
mimicking the high-temperature state before the quen
The microscopic kinetics preserves the numbers of e
spin state. The far-from-equilibrium homogeneous syst
evolves according to the standard MC procedure: a pai
randomly selected nearest-neighbor spins~Si and Sj ! is in-
terchanged with probabilityp, where

p51 if DE<0,

5expS 2
DE

T D if DE.0. ~4!

In Eq. ~4!, DE is the change in energy due to the spin e
change,

DE5J (
kPLi ,kÞ j

~dSiSk
2dSjSk

!1J (
kPL j ,kÞ i

~dSjSk
2dSiSk

!,

~5!

whereLi refers to the nearest neighbors ofi.
The unit of time is 1 Monte Carlo step~MCS!, which

corresponds toN2 attempts to update spins on the lattice. T
results presented here correspond to the case of random
updates. We have confirmed that the results are unchang
we use a sequential updating procedure also. Our simulat
02614
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were performed forq52, 3, 4, 5, 6, 8, 10, 12 atT
50.85Tc . The caseq52 corresponds to the Ising model an
will serve as a reference point for the results presented h
We will subsequently present results for evolution morpho
gies, real-space correlation functions, domain-size distri
tion functions, and domain-growth laws. All statistical resu
presented here are obtained for lattice sizesN5512 ~prior to
renormalization!, and as averages over ten independent ru

We analyze the evolution of the system using the MCR
technique, which was originally developed in the context
equilibrium statistical physics by Ma@2#, and was subse
quently extended by Swendsen and others@33#. The first ap-
plication of the MCRG method to nonequilibrium problem
was a study of critical dynamics by Tobochniket al. @34#.
Subsequently, Vinals and others used this approach to in
tigate ordering dynamics in Ising models@35# and q-state
Potts models@36# with nonconserved kinetics. In this pape
we follow the formulation of Roland and Grant@3#, who
have used this method to study spinodal decomposition
the d52 Ising model with conserved kinetics.

Before we proceed, it is relevant to briefly describe t
MCRG approach in the present context. In the asympto
growth regime, the system is scale invariant, provided t
space and time are rescaled by the appropriate factors.
relationship between the rescaling factors for space and
is determined by the domain-growth law. Consider a ‘‘bloc
spin’’ transformation on the evolving system at timet, where
we map a block ofbd spins$Si% ~whereb is the scale factor!
into a single spinSi8 . A simple implementation of the block
ing procedure is a majority rule, where the entire block
assigned the valueSi8 , corresponding to the majority state i
the block. For blocks with equal numbers of two~or more!
statesn andm, we randomly assign the valuen or m to the
block spin. The RG procedure leads to a slight violation
the conservation law, but we have confirmed numerica
that the error is negligible@3,37#. In the scaling regime, the
length scales of the renormalized patterns at themth and
(m11)th levels of this simple RG procedure are related
each other as

L~m,t !5L~m11,b1/ft !, ~6!

wheref is the growth exponent.
We should stress that Eq.~6! is independent of the RG

procedure, and also applies for lattices that have been me
rescaled by a factor 1/b without any associated ‘‘block-spin’
transformation. The major advantage of the RG procedur
that it eliminates nonuniversal features on short length sc
and enables investigation of asymptotic properties. As
mentioned earlier, there are two important length scales
phase-ordering systems:~a! the time-dependent domai
lengthL(t) and~b! the time-independent interface thickne
s, which is equivalent to the correlation lengthj. The
asymptotic regime is accessed whens/L(t)→0 @31#. Near
the critical point,s ~and j! are large and this considerab
delays the onset of the asymptotic regime. The simple
procedure described above reduces interfacial fluctuati
and thereby the effective interfacial thickness. In this sen
the RG procedure drives the evolving system towards
1-3
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SUBIR K. DAS AND SANJAY PURI PHYSICAL REVIEW E65 026141
zero-temperature fixed point. The general arguments
sented here will be further clarified by our numerical resu
presented in Sec. IV.

IV. NUMERICAL RESULTS

In this section, we present detailed numerical results
tained from the simulations described above. The renorm
ization scale factor is chosen to beb52, i.e., a block of four
spins is mapped onto a single spin at each level of renorm
ization.

A. Evolution morphologies

Figure 1 shows the evolution pictures resulting from
random initial condition for the casesq53, 4, 5, and 10. The
panels on the left show evolution patterns att5106 MCS
without renormalization~corresponding tom50, wherem
refers to the level of renormalization!. For clarity, we use the
following coding procedure for each snapshot. The dom
boundaries are marked as solid lines, and minority spin
bulk domains are marked as crosses. At the relatively h
simulation temperatures we use, there are a consider
number of ‘‘impurity’’ spins in bulk domains. Furthermore
notice that the evolution patterns are primarily comprised
interfaces and point defects, which are three-domain ju
tions. As we have argued earlier, we expect the temp
evolution to be governed by the annihilation of interfac
The panels on the right show the corresponding evolu
patterns at them51 level of renormalization. The RG pro
cedure strongly suppresses fluctuations, as is evident fro
comparison of panels on the left and right. The noise red
tion is a crucial feature of the MCRG procedure and enab
us to access the asymptotic behavior of the evolving syst

The reduction of fluctuations could also be achieved
reducing the system temperature. However, this results in
evolving system becoming trapped in metastable states,
ticularly for large values ofq. The presence of these met
stable states makes it difficult to access the asymptotic
gime in low-temperature simulations.

B. Real-space correlation functions

The numerical data for the real-space correlation functi
and other statistical quantities presented here, was obta
at them53 level of renormalization. The correlation func
tion for the Potts model is computed as follows@15#. A given
Potts state~say,n! is designated as11, and all other states
are designated as21. Thus, at a certain sitei, we define the
Ising variable s i

n52dSi ,n
21. The equal-time correlation

function is then defined as

C~r ,t !5
1

q (
n51

q

@^s i
n~ t !s j

n~ t !&2^s i
n~ t !&^s j

n~ t !&#, ~7!

wherer is the distance between pointsi and j. The angular
brackets in Eq.~7! refer to an averaging over independe
initial conditions and the noise ensemble. As the composi
02614
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of the mixture is fixed, we expect̂s i
n(t)&5^s j

n(t)&52/q
21, though our RG procedure slightly violates this equal

Figure 2 shows the scaled correlation functions for
evolution depicted in Fig. 1. Figure 2~a! plotsC(r ,t)/C(0,t)
versusr /Lc(t) for the caseq54 from three different times.
The scaling lengthLc(t) is defined as the point where th
correlation function decays to half its maximum value. T
reasonable data collapse demonstrates that the evolving
tem exhibits dynamical scaling. Figure 2~b! plots
C(r ,t)/C(0,t) versusr /Lc(t) at t52.53106 MCS for differ-
ent values ofq, i.e.,q52, 3, 4, 5, 10. The scaled correlatio
function clearly depends upon theq value for the conserved

FIG. 1. Evolution pictures atT,Tc for the q-state Potts model
with Kawasaki spin-exchange~conserved! kinetics. Our 2D MC
simulations were performed onN2 lattices with periodic boundary
conditions in both directions. The initial condition for each ru
consisted of a random mixture of equal amounts of theq different
spin states. The temperature for each run isT50.85Tc , whereTc

5J/ ln(11Aq) for theq-state Potts model@4#. ~The Boltzmann con-
stant kB is set to unity.! The unrenormalized system size wasN
5256. The panels on the left show snapshots~1282 corner of the
2562 system! for q53, 4, 5, 10 at timet5106 MCS after the
quench. Each snapshot shows the domain boundaries~marked as
solid lines! and the impurity spins in bulk domains~marked as
crosses!. The panels on the right show renormalized patterns~642

corner of the 1282 system! at them51 level, obtained through the
‘‘block-spin’’ mapping described in the text.
1-4
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Potts model, as our definition of the correlation function
equivalent to that for an Ising model with off-critical com
position^s i&52/q21. In the context of the Ising model with
conserved kinetics, it is well known that the correlation fun
tion varies continuously with the degree of off-criticality@9#.

C. Domain-size distribution functions

Figure 3 plots the domain-size distribution functions f
the evolution depicted in Fig. 1. Again, all numerical da
corresponds to them53 level of renormalization. The
domain-size distributionP( l ,t), wherel is the domain size,
is obtained by examining domain boundaries along horiz
tal and vertical cross sections of evolution snapshots
shown in Fig. 1. The distribution function is normalized
*0

`dlP( l ,t)51. The scaling form of the domain-size distr
bution function isP( l ,t)5Ld(t)21g„l /Ld(t)…, whereLd(t)

FIG. 2. ~a! Scaling plot of the real-space correlation functio
C(r ,t) for the caseq54. The data corresponds tom53 renormal-
ized patterns, obtained from systems of original sizeN5512. We
superpose data forC(r ,t)/C(0,t) versusr /Lc from three different
times, denoted by the indicated symbols. The characteristic le
scaleLc(t) is defined as ther value where the correlation functio
decays to half its maximum value.~b! Comparison of scaled corre
lation functions forq52, 3, 4, 5, 10—denoted by the specified lin
types. The data sets correspond tom53 renormalized patterns a
t52.53106 MCS.
02614
-

-
as

is a measure of the characteristic domain size, e.g.,Ld(t)
5^ l &. Figure 3~a! is a plot of P( l ,t)Ld versusl /Ld for q
54 from three different times and confirms the scaling of t
domain distribution function. Figure 3~b! is a semilog plot of
the data in Fig. 3~a! and exhibits a characteristic exponent
decay for the scaling function@26#.

Figure 4 demonstrates that the scaled probability distri
tion also varies continuously withq. Figure 4~a! plots
P( l ,t)Ld(t) versusl /Ld(t) for q52, 3, 4, 5, 10 att52.5
3106, and the scaling functions are seen to differ system
cally in the tail region. Figure 4~b! is a semilog plot of the
data in Fig. 4~a!, and clarifies the difference in the tail regio
of the scaling functions—the decay is faster for larger valu
of q. The evolution pictures in Fig. 1 provide a qualitativ
reason for this difference—domains for higherq values are
more compact and the probability of deviation from the a
erage length scale is less. For lowerq values, merger event
between domains of similar spin states give rise to la
fluctuations about the average length scale.

th

FIG. 3. ~a! Scaling plot of the domain-size probability distribu
tion function P( l ,t) for the caseq54. The definition ofP( l ,t) is
provided in the text. As in Fig. 2, the data corresponds tom53
renormalized patterns, obtained from systems of original sizeN
5512. We superpose data forP( l ,t)Ld versus l /Ld ~where Ld

5^ l &! from three different times, as indicated.~b! Semilog plot of
the data in~a!. The solid line is a linear fit to the tail region.
1-5
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The compactness of the evolution morphology can
quantified through the dependence of the decay slope in
4~b! @designated as2s(q)# on q. Figure 5 plots ln@s(q)# ver-
sus lnq for the variousq values shown in Fig. 4~b!, in con-
junction with data forq56, 8, 12. Forq→`, we expect
s(q)→`, as the distribution function becomes very sharp
peaked about the average size. The data points forq.3 in
Fig. 5 can be reasonably fitted to a power law w
exponent50.3160.01. However, in the absence of a reliab
analytical argument, our numerical data is inadequate
specify an unambiguous functional form fors(q).

D. Domain-growth laws and exponents

Finally, let us examine the relevant domain-growth law
In the scaling regime, all measures of the characteri
length scale are equivalent upto prefactors. We use the m
direct measure of the length scale, i.e.,Ld(t)5^ l &, the first
moment of the domain-size distribution function. Figure 6~a!
plots Ld(t) versust for q53. We show results form50
~without renormalization! and m53 ~at the third level of

FIG. 4. ~a! Comparison of the scaled domain-size distributio
for the casesq52, 3, 4, 5, 10, denoted by the specified line typ
The data sets correspond tom53 renormalized patterns att52.5
3106 MCS. ~b! Semilog plot of the data in~a!, plotted using indi-
cated symbols. For clarity, we also show the best linear fits to
tail region.
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renormalization!. The data form50 is seen to be consider
ably noisy. If we fit them50 data to the nonlinear form
L(t)5a1btf, the resultant growth exponent isf.0.20.
This is much less than the asymptotic exponent off51/3,
expected on the basis of the curvature-reduction mechan
@6#. On the other hand, the data form53 is seen to be far
smoother~even though it is obtained for effectively smalle
lattice sizes! and the best-fit exponent isf50.30, which is
consistent with the LS growth law. The corresponding no
linear fits are denoted as solid lines on the appropriate d
sets. We should stress that the length scales form50 pat-
terns are only a factor. 3 larger than the length scales fo
m53 patterns, even though the RG scale factor is 2358.
This is because the extreme noisiness of them50 patterns
‘‘breaks’’ up bulk domains, leading to a substantial under
timation of length scales obtained from the probability d
tribution function. On the other hand, the length scale
m52 patterns~not shown here! is approximately two times
the length scale form53 patterns, which is consistent wit
the RG scale factor.

Figure 6~b! is analogous to Fig. 6~a! but for the caseq
54. The relevant best-fit exponents are specified in the
ure. Figures 6~c! and 6~d! correspond to the cases withq
55 and 10, respectively, but only show them53 data. In all
these cases, the growth exponent is seen to be consisten
the LS law. We emphasize that the unambiguous observa
of this result is facilitated by our MCRG procedure. Th
unrenormalized data consistently underestimates the gro
exponent on the time scales of our simulation, regardles
the measure of length scale.

Figures 6~a!–6~d! are plotted on the same scale so as
facilitate a comparison of time scales of growth for differe
q values. Recall that the initial domain sizeL0;q21/2 for
d52, and this provides theq dependence of the prefacto
for the time-dependent length scale. Figure 7 pl

.

e

FIG. 5. Plot of ln@s(q)# versus lnq, where2s(q) is the slope of
the tail region for the scaled probability distributions in Fig. 4~b!.
Notice that we have also included data forq56, 8, 12, which were
not shown in Fig. 4. A linear fit to the data forq.3 yields a slope
.0.3160.01.
1-6
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Lq1(t)/Lq2(t) versus t for the casesq153, 4, 10 andq2

55. For q154 and 10, the length-scale ratio is consiste
with the expected value ofAq2 /q1. A possible source of the
discrepancy forq153 is the weakq dependence of the sur
face tension. Recall that we hadT50.85Tc in our simula-
tions and the surface tensionsst;uTc2Tun(q);@ ln(1
1Aq)#2n(q), wheren(q)(.0) is the relevant critical expo
nent @4#. In our RG procedure, it is difficult to estimate th
renormalized value of the surface tension, though forT50,
we havesst5J, regardless of theq value.

We can also estimate the growth exponent by compa
data at different levels of renormalization as in Eq.~6!. We
compare domain-growth data form52 andm53 and ascer-
tain timest ~for m52! and t8 ~for m53!, where the length
scales are equal. The corresponding growth exponent is
estimated as

feff~ t !5
ln b

ln~ t8/t !

[
ln 2

ln~ t8/t !
. ~8!

Figure 8 plotsfeff(t) versus 1/Ld(t) for q53, 4, 5, 10~as in
Fig. 6!, whereLd(t) refers to the length scale form53 pat-
terns. Huse@29# has studied the approach of the growth e

FIG. 6. Time dependence of the characteristic domain s
Ld(t), obtained as the first moment of the probability distributi
P( l ,t). The solid lines superposed on the various data sets are
linear fits to the formL(t)5a1btf. The corresponding value o
the best-fit exponent is specified in the figure. The error bars on
exponent estimates are60.01. ~a! Data for q53 from the bare
(m50) patterns and the renormalized (m53) patterns.~b! Data for
q54 from them50 andm53 patterns.~c! Data forq55 from the
m53 patterns.~d! Data forq510 from them53 patterns.
02614
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FIG. 7. Plot ofLq1(t)/Lq2(t), whereLq(t) is the length scale
for the q-state Potts model, obtained fromm53 patterns. We
present data forq153, 4, 10 andq255—denoted by the indicated
symbols. The horizontal lines are drawn ata5A5/3, b5A5/4, and
c5A5/10.

FIG. 8. Plot of effective exponentfeff(t) versus 1/Ld(t), where
Ld(t) refers to the length scale obtained from renormalizedm
53) patterns. The effective exponent is obtained by compar
length scales atm52 andm53 levels of renormalization, as ex
plained in the text. We present data forq53, 4, 5, 10. The best
linear fits to the data are denoted by solid lines, and are extrapol
to Ld(t)5`, yielding an estimate of the asymptotic exponent. T
exponent estimates for differentq values are specified in the figure
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ponentf→1/3 ~the LS value! for spinodal decomposition in
the Ising model. He determines the finite-time corrections
the LS exponent as

feff~ t !5
1

3
2

a

L~ t !
1

b

L~ t !2 1¯ , ~9!

wherea, b, etc. are constants. In Fig. 8, we attempt line
fits to our data, as suggested by the first two terms on
right-hand side of Eq.~9!. The extrapolation of these linea
fits to Ld(t)5` ~or t5`! provides an estimate for th
asymptotic growth exponent. The appropriate values
specified in the figure, and are again consistent with the
growth law.

V. SUMMARY AND DISCUSSION

Let us conclude this paper with a summary and discuss
of the results presented here. We have undertaken a com
hensive Monte Carlo renormalization-group~MCRG! study
of phase-separation dynamics in multicomponent mixtu
modeled by theq-state Potts model with conserved kinetic
Domain growth in this model is driven by the evaporatio
condensation mechanism, which enables the annealing o
terfacial defects or domain boundaries. Thus, we expect
main growth to be in the Ising universality class, consist
with the Lifshitz-Slyozov~LS! growth law,L(t);t1/3. Our
simulations unambiguously demonstrate this for a rangeq
values. We stress that the elimination of fluctuations by
MCRG procedure is a critical element for the observation
the correct asymptotic behavior. We could also suppress fl
hn

-
a

he

ys

a
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tuations by reducing the system temperature, but then
evolving system becomes trapped in metastable states—
effect is more pronounced at higherq values. Thus, the
MCRG procedure utilized here appears to be the only via
means of accessing the asymptotic regime for the conse
Potts model with reasonable computing effort.

We have also presented results for the scaling forms of
correlation functions and domain-size distribution function
The scaled correlation function for theq-state Potts mode
varies withq, and is equivalent to that for phase separation
the Ising model with off-criticalitŷ s i&52/q21. The scaled
domain-size distribution also varies withq. In particular, the
exponentially decaying tail falls off more rapidly for large
values ofq, as the more compact domain morphology su
presses large fluctuations in the domain size. In the abse
of reliable analytical arguments, it is difficult to quantify th
q dependence of the slope.

Our present study had two major goals. First, we ha
again demonstrated the utility of the MCRG procedure
accessing the asymptotic regime for evolving nonequilibri
systems. Second, we have provided an anthology of deta
numerical results for the asymptotic regime of doma
growth in multicomponent mixtures. These results should
of considerable relevance to subsequent experimental
analytical studies of this problem.
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