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Dynamics of phase separation in multicomponent mixtures
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We study the dynamics of phase separation in multicomponent mixtures through Monte Carlo simulations of
the g-state Potts model with conserved kinetics. We use the Monte Carlo renormalization-group method to
investigate the asymptotic regime. The domain growth law is found to be consistent with the Lifshitz-Slyozov
law, L(t) ~t*3 (wheret is time), regardless of the value of We also present results for the scaled correlation
functions and domain-size distribution functions for a range wélues.
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[. INTRODUCTION Lifshitz-Cahn-Allen (LCA) law [6]. In the case with con-
served order parametée.g., segregation dynamics of a bi-
There has been much recent interest in phase-orderingary alloy via diffusive processgsve haveg = 1/3, which is
dynamics, viz., the temporal evolution of a homogeneouseferred to as the Lifshitz-SlyozoiLS) law [7]. The LS
multicomponent mixture, which is rendered thermodynami-growth law has been confirmed in a vast range of experi-
cally unstable by a sudden quench below the critical temments[8] and numerical simulation®,3].
perature[1]. After the quench, domains of different ordered It is important to examine the universality of these growth
phases form and grow with time as the system reaches lockws. An experimentally relevant generalization considers
equilibrium on increasing length scales. For bingAB)  the dynamics of ordering irg-component mixtures. The
mixtures, where the evolving system segregates Aatand  equilibrium behavior ofg-component mixtures is often un-
B-rich regions, the far-from-equilibrium coarsening dynam-derstood using}-state spin models. An important example of
ics has been studied extensively through experiments, nuhis is the Potts moddK] with the Hamiltonian
merical simulations, and approximate analytical metHddls
However, the case aj-component mixturesq>2) has re-
ceived far less attention, though such mixtures are of obvious H= _JZ 055 S=12,...4, @
importance in the context of metallurgy and materials sci- i

ence. In this paper, we present comprehensive results fromv@here.](>0) is an exchange interaction that favors parallel

Monte Carlo renormalization-grouMCRG) study[2,3] of spins. In Eq(2), 3, refers to a sum over nearest-neighbor

segregation dynamics in thestate Potts model with con- airs on the underlying lattice: and the Kronecker déla

servg—zd kinetics, wh|ch is a simple model for phase—separatm& 1 if n=m and 0 ifn#m. Another important example of a
multicomponent mixturef4].

Before we proceed, it is useful to briefly review the phe_q-state spin model is the clock model with the Hamiltonian

nomenology for phase-ordering dynamics in binary mixtures, o

as this provides the context for our present st_udy. For isotro- H= _JZ CO{—(S—S]-)} s=12,...0. 3
pic systems, the growth of ordered domains is characterized ) q

by a single time-dependent length schal@) wheret is the

time after the quench. Therefore, the evolving morphology isvhere the exchange interactiod>0) again favors parallel
invariant in time, and the order-parameter correlation funcspins. Clearly, Eqs(2) and(3) are only special cases of the
tion C(r,t), wherer is the spatial separation, exhibits a most general Hamiltonian fay-state spins.

dynamical-scaling fornp5] The crucial difference between the Potts model and the
. . . . clock model is the nature of the penalty between dissimilar
C(r,)=(HROPT+R,) = (H(RONH(T+R,1)) spin states. In the Potts model, all pairs wig#S; are
equally penalized. Thus, the equilibrium std& nonzero
_ r temperatureconsists of interfaces between domains of arbi-
=f Lt/ (1) trary spin state. There are also point defects at the junction of

three types of domains—the probability of having point de-
In Eqg. (1), (r,t) is the relevant order parameter at spacefects with more than three domain types is negligible, re-
point and timet; and the angular brackets refer to an aver-gardless of the value af. On the other hand, in the clock
aging over initial conditions and the noise ensemble. Fomodel, there is a continuous variation of energy §s-Sj|
pure systems, the characteristic length scale exhibits mcreases. The maximum pair energy occurs [§r—S;|
power-law behaviorL (t)~t?, where the exponend de- =[q/2], where[x] refers to the integer part of the argument
pends upon the nature of conservation laws, relevance of Therefore, the equilibrium state of the clock modat
hydrodynamic effects, etd1]. In the case with noncon- nonzero temperatuyeonsists of interfaces between domains
served order parametée.g., ordering dynamics of a ferro- of approximately similar spin states. There are also vortex-
magnel, we have ¢=1/2, which is referred to as the like point defects, which become equivalent to vortex defects
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of the XY model in the limitg—c. Our present study will three-state clock modelThus, at early times, the local spin
focus upon segregation dynamics for the Potts model in Egvariable is effectively continuous and the system behaves
(2). similar to the dynamicaKkY model[18,19. The discrete spin
This paper is organized as follows. In Sec. Il, we discussstructure is seen whe#i(t) = 6y, or L(t)=L.~consqq.
earlier results for phase-ordering dynamics in thstate  This corresponds to the crossover frofi-like behavior to
Potts model, thereby providing a background for the preseniing-like behavior[20]. However, there is no crossover in
study. In Sec. Ill, we describe our numerical techniques anghe growth law because the LCA law characterizes coarsen-
the MCRG methodology. Section IV provides detailed nu-ing resulting from annihilation of both interfacial and vortex
merical results from our simulations. Finally, Sec. V con-defects[18,19.
cludes this paper with a summary and discussion of the A more recent analytical and numerical study of the non-
results. conserved Potts model is due to Sire and Majum(@&v)
[21], who argued that the evolution of tlestate Potts model
Il. OVERVIEW OF EARLIER RESULTS is equivalent to the evolution of an Ising system with
magnetizatioorm=(S;)=2/q—1. SM demonstrated that the
Let us briefly examine available results for ordering dy-domain-growth law id (t) ~t*? for arbitraryq values. They
namics in theg-state Potts model. The-state spin models also obtained approximate analytical results for the real-
[as in Eqs(2) or (3)] have no intrinsic dynamics. Therefore, space correlation function using Mazenko’s Gaussian closure
we associate a physically appropriate stochastic dynamiaschemd22,1].
with these models by placing them in contact with a heat There have been far fewer studies of the Potts model with
bath. The simplest nonconserved kinetics is Glauber spin-fligonserved kinetics, and the physical situation is not as clear
kinetics, where the spin variable at a sités “flipped” as  as in the nonconserved case. An early MC studgin2 is
S—S . Clearly, the spin composition is not conserved bydue to Grest and SahfGS) [23], who reported a very low
this microscopic process, which is an appropriate descriptiogrowth exponent$=0.2 for the cases witly=3, 6. This
of ordering ing-state ferromagnets. The simplest conservedesult was refuted by Jeppesen and Mouritgi) [24], who
kinetics is Kawasaki spin-exchange kinetics, where the spiperformed a 2D MC study of the conserved three-state Potts
variables at neighboring sitésay,i andj) are interchanged model under critical quench conditions, i.e., all components
as §«S;. This microscopic process conserves the spinvere present in equal proportions. JM found that the GS
composition of the mixture and the spin interchange mimicsstudy had underestimated the growth exponent due to long-
diffusive processes in phase-separatopgomponent mix- lived transients, and the asymptotic growth law was consis-
tures[10]. These kinetiag-state spin models also have their tent with the LS lawL (t) ~t*%. The numerical results of JM
coarse-grained counterparts, which consider the relaxationflave been confirmed in an exchange MC study by Okabe
dynamics of §—1) order parameters with appropriate con-[25]. Recently, Tafaet al. [26] have undertaken 2D MC
servation lawg11]. simulations of phase separation in ternary mixtures, and cat-
There have been many numerical and analytical studies afgorized evolution morphologies and growth laws in differ-
the Potts model with nonconserved kinetics, and we willent regions of the parameter space. The three-state Potts
only discuss some representative examples here. Earlyodel is a special case of their general study, which reports
Monte Carlo(MC) studies of this system in dimensionality an asymptotic LS growth law for a wide range of evolution
d=2, 3 are due to Sahni and co-work¢f®]; Kaski etal. =~ morphologies.
[13]; and Kumaret al.[14]. A comprehensive MCRG study To the best of our knowledge, there has been no system-
of the =8 Potts model on a two-dimension@D) triangu-  atic study of theg-state Potts modelgt>3) with conserved
lar lattice was subsequently performed by Roland and Grarkinetics. The asymptotic growth regime should be consistent
[15]. An alternative approach is due to Latial.[16], who  with the LS growth law, as the dominant growth mechanism
undertook a 2D Langevin simulation of the correspondingis the annealing of domain boundaries. However, there are
field-theoretic mode[17]. These numerical studies demon- transient effects that give rise to slower growth laws and
strate that the domain-growth law is consistent with the LCAinterfere with the observation of the asymptotic regime.
law, L(t)~t*2, for all values ofg. Furthermore, the above Firstly, as we have argued before, the early-time behavior is
numerical studies also found that the scaled correlation funagoverned by the annihilation of vortexlike defects. In con-
tion (or its Fourier transform, the scaled structure facfor  trast to the nonconserved case, there is a distinct growth law
the g-state Potts model were comparable to that for dhe associated with vortex annihilation in the conservéy
=2 (Ising) case. model, i.e.,L(t)~tY*in d=2 andL(t)~(tInt)¥*in d=3
It is appropriate to clarify the various regimes for domain[1,27,2§. The crossover from vortex-driven growth to
growth in the Potts model. The characteristic angle betweeimterface-driven growth occurs whéer(t)=L.. The depen-
neighboring spins on the lattice &t)~1/L(t), as the do- dence ofL(t) on g can be determined by the following
main size measures the typical interdefect spacing. At earlgimple argument. In the homogeneous state prior to the
times, 6(t) is larger than the quantization anglé, quench, the density of a spin species|” %, where we con-
=2mlqq, whereqy=3 for three-domain point defectéThe  sider the case of a critical quench. If the domain formation
Potts and clock models are equivalent fog=3 time is ty, the initial domain scale it y~q Y(Dtg)*?
[4]—therefore, the three-domain point defects of the PottsvhereD is the spin diffusion constanfWe assume that the
model are equivalent to the vortex-like point defects of theinitial domain formation occurs by random spin motion.
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Thus, the prefactor in the domain-growth law scales wjth were performed forq=2, 3, 4, 5, 6, 8, 10, 12 afl
asq~ ¥ and the crossover time scaletis-q*qs. Because =0.85T.. The casg =2 corresponds to the Ising model and
of the extreme discreteness of the point defeqts<3), this  will serve as a reference point for the results presented here.
crossover occurs rather early in our simulations. For a mor&Ve will subsequently present results for evolution morpholo-
accurate estimate of crossover time scales and prefactors, Wées, real-space correlation functions, domain-size distribu-
should also account for thg dependence of the surface ten- tion functions, and domain-growth laws. All statistical results
sion, which depends updif.— T| and the appropriate criti- presented here are obtained for lattice siXes512 (prior to
cal exponenf4]. We will discuss this point in greater detail renormalization and as averages over ten independent runs.
later. We analyze the evolution of the system using the MCRG
Another important transient effect is the diffusion of spinstechnique, which was originally developed in the context of
along interfaces, rather than through the domain bulk, whiclequilibrium statistical physics by M§], and was subse-
also yields the slower growth lav,(t)~t¥* [29,30. This  quently extended by Swendsen and otH&@. The first ap-
effect is enhanced at higher temperatures, where the domajication of the MCRG method to nonequilibrium problems
boundaries are rough, and for highgrvalues, where the was a study of critical dynamics by Tobochrek al. [34].
domain length scales are smaller at a given time. Théubsequently, Vinals and others used this approach to inves-
asymptotic growth regime is accessed when the interfacidigate ordering dynamics in Ising mod€l85] and g-state
thicknesso (which is constant in timebecomes irrelevant Potts model$36] with nonconserved kinetics. In this paper,
compared to the diverging domain length sda(¢) [31,33, we follow the formulation of Roland and Graf8], who
i.e., o/L(t)—0. We will subsequently describe and use ahave used this method to study spinodal decomposition in
MCRG procedure to facilitate the observation of the late-thed=2 Ising model with conserved kinetics.

stage behavior. Before we proceed, it is relevant to briefly describe the
MCRG approach in the present context. In the asymptotic

IIl. NUMERICAL TECHNIQUES AND THE MONTE growth regime, the system is scale invariant, provided that
CARLO RENORMALIZATION GROUP space and time are rescaled by the appropriate factors. The
relationship between the rescaling factors for space and time

The Potts model is defined by the Hamiltonian in E2).  is determined by the domain-growth law. Consider a “block-

We performed 2D MC simulations of the Potts model with spin” transformation on the evolving system at tilpevhere
Kawasaki spin-exchange kinetics on a square lattice. At timgve map a block ob® spins{S;} (whereb is the scale factor
t=0, the system was quenched frd=o to T<T., where into a single spir§/ . A simple implementation of the block-
T[=J/In(1++/q)] is the critical temperature fad=2 [4].  ing procedure is a majority rule, where the entire block is
(The Boltzmann constari is set to unity: The system size assigned the valug/ , corresponding to the majority state in
was N? and periodic boundary conditions were imposed inthe block. For blocks with equal numbers of tyar more
both directions. The initial condition for each run consistedstatesn andm, we randomly assign the valueor m to the

of a random mixture of all spin states in equal proportion,plock spin. The RG procedure leads to a slight violation of
mimicking the high-temperature state before the quenchthe conservation law, but we have confirmed numerically
The microscopic kinetics preserves the numbers of eacthat the error is negligibl€3,37]. In the scaling regime, the
spin state. The far-from-equilibrium homogeneous systemength scales of the renormalized patterns at riite and

evolves according to the standard MC procedure: a pair ofm+ 1)th levels of this simple RG procedure are related to
randomly selected nearest-neighbor spi@sand ;) is in-  each other as

terchanged with probabilitp, where
= +1 ple
=1 i AE<O, L(m,t)=L(m+21b~"t), (6)
where ¢ is the growth exponent.
_ F{ AE) : We should stress that E¢6) is independent of the RG
=exp — —| if AE>O. 4) . .
procedure, and also applies for lattices that have been merely
rescaled by a factor h/without any associated “block-spin”
In Eq. (4), AE is the change in energy due to the spin ex-transformation. The major advantage of the RG procedure is
change, that it eliminates nonuniversal features on short length scales
and enables investigation of asymptotic properties. As we
mentioned earlier, there are two important length scales in
phase-ordering systemga) the time-dependent domain
(5) lengthL(t) and(b) the time-independent interface thickness
o, which is equivalent to the correlation length The
wherelL; refers to the nearest neighborsiof asymptotic regime is accessed wheflL(t)—0 [31]. Near
The unit of time is 1 Monte Carlo stefMCS), which  the critical point,o (and ¢) are large and this considerably
corresponds tdl? attempts to update spins on the lattice. Thedelays the onset of the asymptotic regime. The simple RG
results presented here correspond to the case of random M&ocedure described above reduces interfacial fluctuations,
updates. We have confirmed that the results are unchangedand thereby the effective interfacial thickness. In this sense,
we use a sequential updating procedure also. Our simulatioitee RG procedure drives the evolving system towards the

AE=J dss—0ss)tJ dss — 0ss ),
kein;k#j( 5% Slsk) keLEJ-;k;ei( 5% 550
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zero-temperature fixed point. The general arguments pre-
sented here will be further clarified by our numerical results,
presented in Sec. IV.

IV. NUMERICAL RESULTS

In this section, we present detailed numerical results ob-
tained from the simulations described above. The renormal-
ization scale factor is chosen to be=2, i.e., a block of four
spins is mapped onto a single spin at each level of renormal-
ization.

A. Evolution morphologies

Figure 1 shows the evolution pictures resulting from a
random initial condition for the cases=3, 4, 5, and 10. The
panels on the left show evolution patternstat1® MCS
without renormalization(corresponding tan=0, wherem
refers to the level of renormalizatipri-or clarity, we use the
following coding procedure for each snapshot. The domain
boundaries are marked as solid lines, and minority spins in
bulk domains are marked as crosses. At the relatively high
simulation temperatures we use, there are a considerable
number of “impurity” spins in bulk domains. Furthermore,
notice that the evolution patterns are primarily comprised of
interfaces and point defects, which are three-domain junc- -, P
tions. As we have argued earlier, we expect the temporal a=10 f:
evolution to be governed by the annihilation of interfaces. -
The panels on the right show the corresponding evolution
patterns at then=1 level of renormalization. The RG pro-
cedure strongly suppresses fluctuations, as is evident from a _ i
comparison of panels on the left and right. The noise reduc- F'G- 1. Evolution pictures aT <T for the g-state Potts model
tion is a crucial feature of the MCRG procedure and enable¥/Ith Kawasaki spin-exchangéconservedi kinetics. Our 2D MC
us to access the asymptotic behavior of the evolving Systen?]mul_gtlons_were per_form_ed dn Iatt!c_e_s with p.eF'Od'C boundary

The reduction of fluctuations could also be achieved bycondltlons in both directions. The initial condition for each run

consisted of a random mixture of equal amounts ofgldifferent

reducing the system temperature. However, this results in thgIoin states. The temperature for each ruif#s0.85T, , whereT,

evolving system becoming trapped in metastable states, par:

icularly for | | Th £ 1h = J/In(1+/q) for the g-state Potts modéH]. (The Boltzmann con-
ticularly for large values of}. The presence of these meta- stantkg is set to unityy The unrenormalized system size wiss

stable states makes it difficult to access the asymptotic re= 556 the panels on the left show snapshd2& corner of the

gime in low-temperature simulations. 256 system for q=3, 4, 5, 10 at timet=10° MCS after the
quench. Each snapshot shows the domain boundémasked as
B. Real-space correlation functions solid lineg and the impurity spins in bulk domaingnarked as

The numerical data for the real-space correlation functionCToSSe5 The pagels on the right show renormalized patt6
and other statistical quantities presented here, was obtainé lrnekr Of.th,,e 12 s_ystzn) at_Lhedm—lhlevel, obtained through the
at them=3 level of renormalization. The correlation func- Cc<"SPIN" Mapping described in the text
tion for the Potts model is computed as folloji%]. A given
Potts statesay, n) is designated as-1, and all other states of the mixture is fixed, we expedioi(t))=(a](t))=2/q

are designated as1. Thus, at a certain siig we define the — 1, though our RG procedure slightly violates this equality.
Ising variable oi”=253| ,—1. The equal-time correlation Figure 2 shows the scaled correlation functions for the
function is then defined as evolution depicted in Fig. 1. Figurd&® plots C(r,t)/C(0})

versusr/L(t) for the caseg=4 from three different times.
12 . . . N The scaling length_(t) is defined as the point where the
Cr.H= anZl (o' (D) of(1) = (ai'()(a] ()], (7)) correlation function decays to half its maximum value. The
- reasonable data collapse demonstrates that the evolving sys-
tem exhibits dynamical scaling. Figure (b2 plots
wherer is the distance between poiriteindj. The angular  C(r,t)/C(0;t) versusr/L(t) att=2.5x 10° MCS for differ-
brackets in Eq(7) refer to an averaging over independentent values ofj, i.e.,q=2, 3, 4, 5, 10. The scaled correlation
initial conditions and the noise ensemble. As the compositioriunction clearly depends upon tlgevalue for the conserved
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FIG. 2. (a) Scaling plot of the real-space correlation function FIG. 3. (a) Scaling plot of the domain-size probability distribu-
C(r,t) for the caseq=4. The data corresponds to=3 renormal- i, fynction P(1,t) for the caseq=4. The definition ofP(l,t) is
ized patterns, obtained from systems of original size512. We provided in the text. As in Fig. 2, the data correspondsnte 3
superpose data faE(r,t)/C(0\t) versusr/L from three different  onomalized patterns, obtained from systems of original Bize
times, denoted by the indicated symbols. The characteristic length. 515 e superpose data f@(l,t)Ly versus!/Ly (where Lg
scaleL.(t) is defined as the value where the correlation function =(1)) from three different times, as indicate) Semilog plot of
decays to half its maximum valugb) Comparison of scaled corre- o yata in(a). The solid line is a linear fit to the tail region.
lation functions forg=2, 3, 4, 5, 10—denoted by the specified line
types. The data sets correspondnte=-3 renormalized patterns at
t=2.5x10° MCS. is a measure of the characteristic domain size, &g(t)

=(I). Figure 3a) is a plot of P(l,t)L4 versusl/Ly for g
Potts model, as our definition of the correlation function is=4 from three different times and confirms the scaling of the
equivalent to that for an Ising model with off-critical com- domain distribution function. Figure() is a semilog plot of
position(a;)=2/g— 1. In the context of the Ising model with the data in Fig. @) and exhibits a characteristic exponential
conserved kinetics, it is well known that the correlation func-decay for the scaling functiof26].

tion varies continuously with the degree of off-criticalf. Figure 4 demonstrates that the scaled probability distribu-
tion also varies continuously witlg. Figure 4a) plots

P(l,t)Lg4(t) versusl/Ly(t) for =2, 3, 4, 5, 10 at=2.5
X 10°, and the scaling functions are seen to differ systemati-
Figure 3 plots the domain-size distribution functions for cally in the tail region. Figure @) is a semilog plot of the
the evolution depicted in Fig. 1. Again, all numerical datadata in Fig. 4a), and clarifies the difference in the tail region
corresponds to then=3 level of renormalization. The of the scaling functions—the decay is faster for larger values
domain-size distributioP(l,t), wherel is the domain size, of g. The evolution pictures in Fig. 1 provide a qualitative
is obtained by examining domain boundaries along horizonreason for this difference—domains for higlegeralues are
tal and vertical cross sections of evolution snapshots, agmore compact and the probability of deviation from the av-
shown in Fig. 1. The distribution function is normalized aserage length scale is less. For lowgvalues, merger events
JodIP(l,t)=1. The scaling form of the domain-size distri- between domains of similar spin states give rise to large
bution function isP(I,t)=L4(t) 1g(/L4(t)), whereL4(t) fluctuations about the average length scale.

C. Domain-size distribution functions
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FIG. 5. Plot of Ifis(q)] versus Iy, where—s(q) is the slope of
the tail region for the scaled probability distributions in Figb)
Notice that we have also included data épr 6, 8, 12, which were
not shown in Fig. 4. A linear fit to the data for>3 yields a slope
=0.31+0.01.

In[P(L,)L,]

renormalization The data fom=0 is seen to be consider-
ably noisy. If we fit them=0 data to the nonlinear form
L(t)=a+bt?, the resultant growth exponent i5=0.20.
This is much less than the asymptotic exponentpef1/3,
expected on the basis of the curvature-reduction mechanism
[6]. On the other hand, the data for=3 is seen to be far
smoother(even though it is obtained for effectively smaller
lattice sizey and the best-fit exponent ig=0.30, which is

FIG. 4. (@ Comparison of the scaled domain-size distributionsconsistent with the LS growth law. The corresponding non-
for the caseg|=2, 3, 4, 5, 10, denoted by the specified line types. |inear fits are denoted as solid lines on the appropriate data
The data sets correspond to=3 renormalized patterns &2.5  gets. We should stress that the length scalesrfer0 pat-
X 10° MCS. (b) Semilog plot of the data ife), plotted using indi- terns are only a facto= 3 larger than the length scales for
cgted s_ymbols. For clarity, we also show the best linear fits to thq:.n=3 patterns, even though the RG scale factor jsa.
tail region. This is because the extreme noisiness ofthe0 patterns

“breaks” up bulk domains, leading to a substantial underes-

The compactness of the evolution morphology can bz. . ) T
iy . —.fimation of length scales obtained from the probability dis-
quantified through the dependence of the decay slope in Fi fibution function. On the other hand, the length scale for

4(b) [designated as s(q)] onq. Figure 5 plots Ifs(q)] ver- m=2 patterngnot shown hergis approximately two times

sus Ing for the variousq values shown in Fig. @), in con- - o : :
junction with data forq=6, 8, 12. Forq—, we expect the length scale fom=3 patterns, which is consistent with
the RG scale factor.

s(q)—oe, as the distribution function becomes very sharply . . .
. . ) Figure @b) is analogous to Fig. (@) but for the casey
peaked about the average size. The data points¥a8 in =4. The relevant best-fit exponents are specified in the fig-

Fig. 5 can be reasonably fitted to a power law with ure. Figures &) and 6d) correspond to the cases with
. . . .
exponent 0.31+0.01. However, in the absence of a reliable —5 and 10, respectively, but only show the=3 data. In all

analytical argument, our numerical data is inadequate t?h h h X b ; ith
specify an unambiguous functional form fs(q). ese cases, the growth exponent is seen to be consistent wit
the LS law. We emphasize that the unambiguous observation
) of this result is facilitated by our MCRG procedure. The
D. Domain-growth laws and exponents unrenormalized data consistently underestimates the growth
Finally, let us examine the relevant domain-growth laws.exponent on the time scales of our simulation, regardless of
In the scaling regime, all measures of the characteristithe measure of length scale.
length scale are equivalent upto prefactors. We use the most Figures 6a)—6(d) are plotted on the same scale so as to
direct measure of the length scale, ilgy(t)=(l), the first facilitate a comparison of time scales of growth for different
moment of the domain-size distribution function. Figute)6 g values. Recall that the initial domain sitg~q~ 2 for
plots L4(t) versust for q=3. We show results fom=0  d=2, and this provides thg dependence of the prefactor
(without renormalization and m=3 (at the third level of for the time-dependent length scale. Figure 7 plots
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£ (10° MCS) £ (10° MCS) FIG. 7. Plot ofLq;(t)/Lgo(t), whereLy(t) is the length scale

for the g-state Potts model, obtained from=3 patterns. We

FIG. 6. Time dependence of the characteristic domain sizepresent data fog, =3, 4, 10 andy,=5—denoted by the indicated
L4(t), obtained as the first moment of the probability distribution symbols. The horizontal lines are drawneat \/5/3, b= \/5/4, and
P(l,t). The solid lines superposed on the various data sets are noe= +/5/10.
linear fits to the formL(t)=a+bt®. The corresponding value of
the best-fit exponent is specified in the figure. The error bars on the
exponent estimates are0.01. (a) Data for q=3 from the bare
(m=0) patterns and the renormalizesi€ 3) patterns(b) Data for
g=4 from them=0 andm=3 patterns(c) Data forq=5 from the

m= 3 patterns(d) Data forq=10 from them=3 patterns.

Lg1(t)/Lgo(t) versust for the casesy;=3, 4, 10 andq,

=5. Forg;=4 and 10, the length-scale ratio is consistent

with the expected value ofq,/q;. A possible source of the 0.35
discrepancy foig, =3 is the weakg dependence of the sur-
face tension. Recall that we hdd=0.85T, in our simula-
tions and the surface tensiomrg~|T,—T|"@~[In(1
+9)1"@, wherev(q)(>0) is the relevant critical expo-
nent[4]. In our RG procedure, it is difficult to estimate the
renormalized value of the surface tension, thoughTferO,

we haveog=J, regardless of thg value.

We can also estimate the growth exponent by comparing
data at different levels of renormalization as in Eg). We
compare domain-growth data for=2 andm=3 and ascer-
tain timest (for m=2) andt’ (for m=3), where the length
scales are equal. The corresponding growth exponent is then

estimated as
B Inb
Der(t) = (/0

In2
In(t'/t)”

04
' ' ' G=3,0=0.35

g=4, 6 =034
q=5, =033
q=10, $ =032

> ¢ O O

1/3

0.3

eV

0.25

L L L L L
0 0.1 0.2 0.3 04 0.5

1L 0)

FIG. 8. Plot of effective exponenpx(t) versus 1L 4(t), where
Lq(t) refers to the length scale obtained from renormalized (
(8) =3) patterns. The effective exponent is obtained by comparing
length scales am=2 andm=3 levels of renormalization, as ex-
plained in the text. We present data fge=3, 4, 5, 10. The best

Figure 8 plotseeg(t) versus 1 4(t) for q=3, 4, 5, 10(as in  Jinear fits to the data are denoted by solid lines, and are extrapolated
Fig. 6), whereL 4(t) refers to the length scale fon=3 pat-  to L4(t)=<, yielding an estimate of the asymptotic exponent. The
terns. Husd29] has studied the approach of the growth ex-exponent estimates for differeqtvalues are specified in the figure.
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ponent¢— 1/3 (the LS valug for spinodal decomposition in tuations by reducing the system temperature, but then the
the Ising model. He determines the finite-time corrections tevolving system becomes trapped in metastable states—this
the LS exponent as effect is more pronounced at higher values. Thus, the
MCRG procedure utilized here appears to be the only viable
ben(t) = 1 IRl B 4. ) means of accessing the asymptotic regime for the conserved
eff 3 L(t) L(t)? ' Potts model with reasonable computing effort.

We have also presented results for the scaling forms of the
where e, B, etc. are constants. In Fig. 8, we attempt linearcorrelation functions and domain-size distribution functions.
fits to our data, as suggested by the first two terms on thehe scaled correlation function for thiestate Potts model
right-hand side of Eq(9). The extrapolation of these linear yaries withg, and is equivalent to that for phase separation in
fits to Ly4(t)=o0 (or t=c0) provides an estimate for the the Ising model with off-criticality o;) = 2/q— 1. The scaled
asymptotic growth exponent. The appropriate values argomain-size distribution also varies with In particular, the
specified in the figure, and are again consistent with the L&xponentially decaying tail falls off more rapidly for larger
growth law. values ofg, as the more compact domain morphology sup-

presses large fluctuations in the domain size. In the absence
V. SUMMARY AND DISCUSSION of reliable analytical arguments, it is difficult to quantify the
ﬂ dependence of the slope.

Our present study had two major goals. First, we have
of the results presented here. We have undertaken a comprgg-]ain d%monstratedythe utility of ihe gMCRG procedure in

hensive Monte Carlo renormalization-groddCRG) study accessing the asymptotic regime for evolving nonequilibrium

of phase-separation dynamics in multicomponent mixtures, - .
modeled by they-state Potts model with conserved kinetics. systems. Second, we have provided an anthology of detailed

Domain growth in this model is driven by the eva Oration_numerical results for the asymptotic regime of domain
gr ) . y PO . growth in multicomponent mixtures. These results should be
condensation mechanism, which enables the annealing of irx;

. . : f considerable relevance to subsequent experimental and

terfacial defects or domain boundaries. Thus, we expect do- : : :
; . . : . . analytical studies of this problem.

main growth to be in the Ising universality class, consistent
with the Lifshitz-Slyozov(LS) growth law, L(t)~tY%. Our
simulations unambiguously demonstrate this for a rangg of ACKNOWLEDGMENT
values. We stress that the elimination of fluctuations by the
MCRG procedure is a critical element for the observation of S.K.D. is grateful to the University Grants Commission,

the correct asymptotic behavior. We could also suppress fludadia for financial support.

Let us conclude this paper with a summary and discussio
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